Function Representation \& Spherical Harmonics

Function approximation

- $G(x)$... function to represent
- $B_{1}(x), B_{2}(x), \ldots B_{n}(x) \ldots$ basis functions
- $G(x)$ is a linear combination of basis functions

$$
G(x)=\sum_{i=1}^{n} c_{i} B_{i}(x)
$$

- Storing a finite number of coefficients c_{i} gives an approximation of $G(x)$

Examples of basis functions

Tent function (linear interpolation)
Associated Legendre polynomials

Function approximation

- Linear combination
- sum of scaled basis functions

Function approximation

- Linear combination
- sum of scaled basis functions

$$
\sum_{i=1}^{n} c_{i} B_{i}(x)=
$$

Finding the coefficients

- How to find coefficients c_{i} ?
- Minimize an error measure
- What error measure?
- L_{2} error

Finding the coefficients

- Minimizing $E_{L 2}$ leads to

$$
\left[\begin{array}{cccc}
\left\langle B_{1} \mid B_{1}\right\rangle & \left\langle B_{1} \mid B_{2}\right\rangle & \cdots & \left\langle B_{1} \mid B_{n}\right\rangle \\
\left\langle B_{2} \mid B_{1}\right\rangle & \left\langle B_{2} \mid B_{2}\right\rangle & & \vdots \\
\vdots & & \ddots & \vdots \\
\left\langle B_{n} \mid B_{1}\right\rangle & \left\langle B_{n} \mid B_{2}\right\rangle & \cdots & \left\langle B_{n} \mid B_{n}\right\rangle
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
\left\langle G \mid B_{1}\right\rangle \\
\left\langle G \mid B_{2}\right\rangle \\
\vdots \\
\left\langle G \mid B_{n}\right\rangle
\end{array}\right]
$$

Where

$$
\langle F \mid H\rangle=\int_{I} F(x) H(x) d x
$$

Finding the coefficients

- Matrix

$$
\mathbf{B}=\left[\begin{array}{cccc}
\left\langle B_{1} \mid B_{1}\right\rangle & \left\langle B_{1} \mid B_{2}\right\rangle & \cdots & \left\langle B_{1} \mid B_{n}\right\rangle \\
\left\langle B_{2} \mid B_{1}\right\rangle & \left\langle B_{2} \mid B_{2}\right\rangle & & \vdots \\
\vdots & & \ddots & \vdots \\
\left\langle B_{n} \mid B_{1}\right\rangle & \left\langle B_{n} \mid B_{2}\right\rangle & \cdots & \left\langle B_{n} \mid B_{n}\right\rangle
\end{array}\right]
$$

does not depend on $\mathrm{G}(\mathrm{x})$

- Computed just once for a given basis

Finding the coefficients

- Given a basis $\left\{\mathrm{B}_{\mathrm{i}}(\mathrm{x})\right\}$

1. Compute matrix \mathbf{B}
2. Compute its inverse \mathbf{B}^{-1}

Given a function $\mathrm{G}(\mathrm{x})$ to approximate

1. Compute dot products

$$
\left[\begin{array}{llll}
{\left[G\left|B_{1}\right\rangle\right.} & \left\langle G \mid B_{2}\right\rangle & \cdots & \left\langle G \mid B_{n}\right\rangle
\end{array}\right]^{T}
$$

2. ... (next slide)

Finding the coefficients

2. Compute coefficients as

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\mathbf{B}^{-1}\left[\begin{array}{c}
\left\langle G \mid B_{1}\right\rangle \\
\left\langle G \mid B_{2}\right\rangle \\
\vdots \\
\left\langle G \mid B_{n}\right\rangle
\end{array}\right]
$$

Orthonormal basis

- Orthonormal basis means

$$
\left\langle B_{i} \mid B_{j}\right\rangle= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- If basis is orthonormal then

$$
\mathbf{B}=\left[\begin{array}{cccc}
\left\langle B_{1} \mid B_{1}\right\rangle & \left\langle B_{1} \mid B_{2}\right\rangle & \cdots & \left\langle B_{1} \mid B_{n}\right\rangle \\
\left\langle B_{2} \mid B_{1}\right\rangle & \left\langle B_{2} \mid B_{2}\right\rangle & & \vdots \\
\vdots & & \ddots & \vdots \\
\left\langle B_{n} \mid B_{1}\right\rangle & \left\langle B_{n} \mid B_{2}\right\rangle & \cdots & \left\langle B_{n} \mid B_{n}\right\rangle
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right]=\mathbf{I}
$$

Orthonormal basis

- If the basis is orthonormal, computation of approximation coefficients simplifies to

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
\left\langle G \mid B_{1}\right\rangle \\
\left\langle G \mid B_{2}\right\rangle \\
\vdots \\
\left\langle G \mid B_{n}\right\rangle
\end{array}\right]
$$

- We want orthonormal basis functions

Orthonormal basis

- Projection: How "similar" is the given basis function to the function we're approximating

Another reason for orthonormal basis functions

- Intergral of product = dot product of coefficients

$$
f(x) g(x) d x=
$$

Application to \mathbf{G}

- Illumination integral

$$
L_{o}=\int L_{i}\left(\omega_{i}\right) \operatorname{BRDF}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

Spherical Harmonics

Spherical harmonics

- Spherical function approximation
- Domain $I=$ unit sphere S
- directions in 3D
- Approximated function: $G(\theta, \varphi)$
- Basis functions: $Y_{i}(\theta, \varphi)=Y_{\mathrm{l}, \mathrm{m}}(\theta, \varphi)$
- indexing: $i=1(1+1)+m$

The SH Functions

$$
l=0
$$

$l=1$
$l=2$

$l=3$

$$
x^{\circ} x^{\circ} *^{\circ} \psi^{\circ} *^{\circ} x^{\circ} x^{\circ}
$$

Spherical harmonics

$$
y_{l}^{m}(\theta, \varphi)= \begin{cases}\sqrt{2} K_{l}^{m} \cos (m \varphi) P_{l}^{m}(\cos \theta), & m>0 \\ \sqrt{2} K_{l}^{m} \sin (-m \varphi) P_{l}^{-m}(\cos \theta), & m<0 \\ K_{l}^{0} P_{l}^{0}(\cos \theta), & m=0\end{cases}
$$

- K ... normalization constant
- P ... Associated Legendre polynomial
- Orthonormal polynomial basis on $(0,1)$
- In general: $Y_{l, m}(\theta, \varphi)=K . \Psi(\varphi) \cdot P_{l, m}(\cos \theta)$
- $Y_{l, m}(\theta, \varphi)$ is separable in θ and φ

Function approximation with SH

$$
G(\theta, \varphi)=\sum_{l=0}^{n-1} \sum_{m=-l}^{m=l} c_{l, m} Y_{l, m}(\theta, \varphi)
$$

- n...approximation order
- There are n^{2} harmonics for order n

Function approximation with SH

- Spherical harmonics are orthonormal
- Function projection

$$
c_{l, m}=\left\langle G \mid Y_{l, m}\right\rangle=\int_{S} G(\omega) Y_{l, m}(\omega) d \omega=\int_{0}^{2 \pi \pi} \int_{0} G(\theta, \varphi) Y_{l, m}(\theta, \varphi) \sin \theta d \theta d \varphi
$$

- Usually evaluated by numerical integration
- Low number of coefficients
\rightarrow low-frequency signal

Function approximation with SH

Product integral with SH

- Simplified indexing

$$
\begin{aligned}
& -Y_{i}=Y_{l, m} \\
& -i=I(I+1)+m
\end{aligned}
$$

- Two functions represented by SH $F(\omega)=\sum_{i=0}^{n^{2}} f_{i} Y_{i}(\omega)$ $G(\omega)=\sum_{i=0}^{n^{2}} g_{i} Y_{i}(\omega)$

$$
\int_{S} F(\omega) G(\omega) d \omega=\sum_{i=0}^{n^{2}} f_{i} g_{i}
$$

